Fluorescence correlation spectroscopy, raster image correlation spectroscopy, and number and brightness on a commercial confocal laser scanning microscope with analog detectors (Nikon C1).

نویسندگان

  • Pierre D J Moens
  • Enrico Gratton
  • Iyrri L Salvemini
چکیده

Fluorescence correlation spectroscopy (FCS) was developed in 1972 by Magde, Elson and Webb. Photon counting detectors and avalanche photodiodes have become standards in FCS to the point that there is a widespread belief that these detectors are essential to perform FCS experiments, despite the fact that FCS was developed using analog detectors. Spatial and temporal intensity fluctuation correlations using analog detection on a commercial Olympus Fluoview 300 microscope have been reported by Brown et al. (2008). However, each analog instrument has its own idiosyncrasies that need to be understood before using the instrument for FCS. In this work, we explore the capabilities of the Nikon C1, a low-cost confocal microscope, to obtain single point FCS, Raster-scan image correlation spectroscopy (RICS), and Number and Brightness data both in solution and incorporated into the membrane of giant unilamellar vesicles. We show that it is possible to obtain dynamic information about fluorescent molecules from single point FCS, RICS, and Number and Brightness using the Nikon C1. We highlighted the fact that care should be taken in selecting the acquisition parameters to avoid possible artifacts due to the detector noise. However, due to relatively large errors in determining the distribution of digital levels for a given microscope setting, the system is probably only adequate for determining relative brightness within the same image.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raster image correlation spectroscopy and number and brightness analysis.

The raster image correlation spectroscopy (RICS) and number and molecular brightness (N&B) methods are used to measure molecular diffusion in complex biological environments such as the cell interior, detect the formation of molecular aggregates, establish the stoichiometry of the aggregates, spatially map the number of mobile molecules, and quantify the relative fraction of molecules participa...

متن کامل

Measuring diffusion of lipid-like probes in artificial and natural membranes by raster image correlation spectroscopy (RICS): use of a commercial laser-scanning microscope with analog detection.

The heterogeneity in composition and interaction within the cellular membrane translates into a wide range of diffusion coefficients of its constituents. Therefore, several complementary microfluorimetric techniques such as fluorescence correlation spectroscopy (FCS), fluorescence recovery after photobleaching (FRAP) and single-particle tracking (SPT) have to be applied to explore the dynamics ...

متن کامل

Raster Image Correlation Spectroscopic Analysis of Intranuclear Molecular Dynamics

In contrast to conventional epi-illumination microscopy in confocal laser scanning microscopy images are acquired sequentially either in point scanning or line scanning mode. This scanning approach therefore contains spatio-temporal information, which can be used to obtain insight into molecular dynamics, e.g. diffusion coefficients of fluorescently labeled probes. Raster Image Correlation Spec...

متن کامل

Detecting protein complexes in living cells from laser scanning confocal image sequences by the cross correlation raster image spectroscopy method.

We describe a general method for detecting molecular complexes based on the analysis of single molecule fluorescence fluctuations from laser scanning confocal images. The method detects and quantifies complexes of two different fluorescent proteins noninvasively in living cells. Because in a raster scanned image successive pixels are measured at different times, the spatial correlation of the i...

متن کامل

Scanning image correlation spectroscopy.

Molecular interactions are at the origin of life. How molecules get at different locations in the cell and how they locate their partners is a major and partially unresolved question in biology that is paramount to signaling. Spatio-temporal correlations of fluctuating fluorescently tagged molecules reveal how they move, interact, and bind in the different cellular compartments. Methods based o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Microscopy research and technique

دوره 74 4  شماره 

صفحات  -

تاریخ انتشار 2011